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SMALL BENDING AND STRETCHING OF SANDWICH-TYPE SHELLS

By Eric REISSNER

SUMMARY

A theory has been developed for small bending and stretching
of sandwich-type shells. This theory is an extension of the
known theory of homogeneous thin elastic shells. It was found
that two effects are important in the present problem, which are
not normally of importance in the theory of curved shells: (1)
The effect of transverse shear deformation and (2) the effect of
transverse normal stress deformation. The first of these two
effects has been Enown to be of importance in the theory of plates
and beams. The second effect was found to oceur in a manner
which s typical for shells and has no counterpart in flat-plate
theory.

The general results of this report have been applied to the
solution of problems concerning flat plates, circular rings,
circular cylindrical shells, and spherical shells. In each case
numerical examples hate been given, illustrating the magnitude
of the effects of transverse shear and normal stress deformation.

The results of this imvestigation indicate the mecessity of
taking account of transverse shear and normal stress in sandwich-
type shells, as soon as there is an order-of-magnitude difference
between the elastic constanis of the core layer and of the face
layers of the composite shell. It was found that the changes due
to transverse shear and normal stress deformation in the core

-may be so large as to be no mere corrections to the results of the
theory without transverse core flexibility.

The actual magnitude of the changes is greatly dependent on
the geometry and loading condition of the structure under con~
sideration so that no general rules may be given which indicate
for which elastic modulus ratio the changes begin to be significant.

Solutions of problems in the present theory may in general be
obtained by mathematical methods which are similar to those
employed in the theory of plates and shells without the effect of
transverse shear and normal stress deformation included. The
present work does not include consideration of buckling and
finite deflection effects. '

INTRODUCTION

In this report an extension of the classical theory of small
bending and stretching of thin elastic shells is considered.
Instead of a homogeneous shell, dnvestigation is made of a
shell constructed in three layers: A core layer of thickness A
with elastic constants E,, @, and ». and two face layers of
thickness ¢ with elastic constants E, &, and ». In the
developments certain restrictive assumptions are made which
somewhat limit the general applicability of the results. In
so doing formulas are obtained which are as compact as

possible while still describing the essential characteristies of
the sandwich-type shell.

The thickness ratio i/h is assumed small compared with
unity; at the same time the ratio Eg/E} is assumed large
compared with unity. This latter assumption means that
the face material is so much stiffer than the core material
that the contribution of the core layer to stress couples and
tangential stress resultants of the composite shell is negli-
gible. It is known that for flat plates these assumptions
necessitate the taking into account of the effect of transverse
shear deformation. (See, for instance, reference 1.) The
same would be expected to be true for curved shells, and the
present report, therefore, gives a system of equations in
which this effect is incorporated.

A further effect which, it appears, has not been considered
previously in the analysis of small deflections of sandwich
structures is the effect of ftransverse normal stress deforma-
tion. In the present report it is shown that this effect srises
in & manner which is typieal for shells and has no counterpart
in plate theory. Itmay be likened, roughly, to what happens
in the bending of curved tubes.

The process by which the general results of this report are
obtained is as follows: First, each of the face layers of thick-
ness ¢ is assumed to behave like a thin shell without bending
stiffness. The loads applied to these face shells, henceforth
called face membranes, are of two kinds: (1) External Ioads
and (2) loads caused by the stresses in the core layer. Next,
the core layer of thickness % is assumed to behave like a three-
dimensional elastic continuum in which those stresses which
are parallel to the faces are negligible compared with the
transverse shear and normal stresses. Omn the basis of these
two assumptions three steps are carried ouf. First, the
equilibrium equations of the core layer and of the face layers
are obtained. Then an appropriate expression for the strain
energy of the composite structure is derived. Finally, Castig-
liano’s theorem of minimum complementary energy is used to
obtain the relations which connectstress resultants and couples
of the composite shell with the quantities which describe the
state of deformation of the composite shell.

The system of equations which is obtained in the foregoing
manner is specialized for the following cases:

(1) Flat plate

(2) Circular ring

(3) Cireular eylindrical shell

(4) Spherical shell with axisymmetrical deformation
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In each case a number of problems are solved explicitly and
the appreciable effect of transverse shear and/or normal stress
deformation is illustrated numerically.

This work was conducted at the Massachusetts Institute
of Technology under the sponsorship and with the financial
assistance of the National Advisory Committee for Aero-

nautics. .
N SYMBOLS

h core-layer thickness

t face-layer thickness

curvilinear coordinates on middle surface of com-
posite shell

¢ distance coordinate measured along normal to
middle surface of shell

coefficients of linear element on middle surface of

Ei; &

@1, O
shell .

R, R, principal radii of curvature of middle surface of
shell

Nauma direct stress resultants in upper face membrane;
n=1,2; m==1,2

Numt direct. shess Iesulta,nts in_lower face membrane

Puu, Pnz tangential components of external load intensity
on upper and lower membranes

Qur @1 normal components of external load intensity on
upper and lower membranes

T, To¢  components of transverse shear stress in core layex

at component of transverse normal stress in core layer

Tatuy Torg volues of transversc shear stresses for = A/2;
n=1,2

oy oz values, of transverse normal stresses for {=--Ah/2

T ntm values of transverse shear stresses at middle sur-
face of shell

Q. @ transverse shear stress resultants o

Nun direct stress resultants parallel to middle surface
for composite shell; n=1,2; m=1,2

My stress couples for composite shell; n=1,2; m=1,2

D tangential components of external load intensity
for composite shell; n=1,2

g normal component of external load intensity for
composite shell

§ external load 1ntens1ty term defined by equa-
tion (22)

I strain energy )

E;, G;, v elastic moduli of 1sotloplc face-layer material;
v=1vr

E., G. elastic moduli in transverse d1rect1on of core-layer

' material

Wy, Ug effective tangential components of dlspla.cement

of elements of composite shell
" w effective normal component of d1sp1acement of
elements of composite shell

B1; B effective components of change of slope of normal
to middle surface of composite shell
&n component of strain (emn=orn/E:)
O = 2tEf
D*—(l/")t(h—[—t)zE_f
=0*/(1—7)
D bending stiffness factor (D D*/(1—»9)

z, Y Cartesian coordinates in plane of flat plate
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7,0 polar coordinates in plane of flat plate

a- radius of circular ring, cylindrical shell, and spher-
ical shell '

z, 6 surface coordinates on cylindrical shell

A1y Ag, A2 parameters defined by equation (63)
p=mnil
l half wave length of sinusoidal load distribution

my, me - quantities defined by equation (197)

k complex quantity defined by equation (200)
¢, 0 surface coordinates on spherical shell

@ quantity defined by equation (74)

K parameter defined by equation (190)

I—GENERAL THEORY

STATICS OF SANDWICH-TYPE SHELL

In order to derive a complete system of equations for the
shell composed of face layers and core layers it is necessary
first to consider separately the statics of the face layers and
that of the core layer of the shell. Combination of the resulls
obtained for these two components of the composite strueture
must and will lead to those differential equations of equilib-
rium which hold for elements ‘of a shell, whether this shell
is of homogeneous or nonhomogeneous construction. In
addition, however, relations are obtained which are charac-
teristic of the sandwich-type shell.

Coordinate system on shell—A curvilinear coordinale
system (&, &, ¢} is introduced as follows: Let & and & be
coordinates on the middle surface of the composite shell and
let ¢ be the distance of a point of the shell from its middle
surface, measured along the normal to the middle surface.
In order that this system of coordinates be an orthogonal
system, choose the &, £ curves as lines of curvature on the
middle surface (in the case of shells of revolution the lines
of curvature are identical with the meridians and parallels
on the middle surface).

The linear element in the forgoing system of coordinales
is of the form

st (145 ) dittar (1+5) drkar )

where e; and o; are the coefficients of the linear element on
the middle surface and R, and R, are the principal radii of
curvature of the middle surface (see fig. 1). Formulas for
the calculation of the quantities «, and R, are contained in
texts on differential geometry. They arc collected, together
with other results, in reference 2, which deals with the

- theory of homogeneous thin shells.

Statics of face layers.—The face layers are treated as
thin shells of thickness ¢ and it is assumed that the bendiug
stiffness of these thin shells about their own middle surface
may be neglected. (This,- of course, means that no local
buckling phenomena are considered in the present work.)
Because of this neglect from now on they will be designated
as face membranes.

The middle surfaces of the face membranes evidently are
given with reference to the three-dimensional system of

=3 (D) and r=—3 (i-+0.

curvilinear coordinates by
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FicGRE I.—Element of composite shell, showing coordinates and dimensions.

From equation (1) it follows that the linear element on the
middle surfaces of the face membranes is given by

—e (12 1L BN G2t (1:& b 1) @

The components of external load intensity on the upper
and lower membranes are designated by 14, Pes, and ¢, and
by P, pa, and ¢, respectively (fig. 2). The core-layer
stresses which act on the upper and lower membranes ars
given as 7ipy, Tory, 80d opy a0d by 7igq, Tagi, and oy respectively.
Finally, the direct stress resultants in the upper and lower
face membranes are designated by Nuu, Nisu, Naw, and

Ny and by Ny, Niat, N, and Naj, Tespectively (fig. 2).

FierRE 2.—Element of composite shell, showing location and orientation of stress resultants
in face layers and core layer and orientation of externsl loads.
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There are then three equations of force equilibrium for the
elements of each of the two membranes. Writing

Cpy== Cp (1 '{"h_rt

3
Cp1=0p (l—bit @

the equations for the upper-face membrane are the following:!

aazuATnu aamiyzm Qayy 933
aEl + a& +Nl2u a_&_NHu asl + ”
alua:’.u(plu_"'li‘ﬂ) =0 (4)
aazuM’u + aalggﬂu + M‘!lu 'aaa_gu - Nnu aai; +
[248782 1) (qu - Tzfu) =0 (5)

Nnu Allu

[29%7X2 270
R <1+9Rl) R, (1+ L

The corresponding equations for the lower-face membrane
are

aasz 117

gut m]=o ®

aaul\ a

aall T

aEL + af_ +.«7V19: a& 9ot aE +C\Cuazl (Pll'l“‘lﬂ) 0
(M

a g AT., a \T-) a 3 T a
azazEl 1-l+ alal-:éz 20 47 r\” aogl . aagl —taom (ng-{-nzn) 0

®
ooy N + Aiz;h-t —@i—opn |[=0 (9)
25 B (-5

As bending moments and transverse shears are assumed
not to be acting in the individual membranes the moment
equilibrium equations become the symmetry relations

Niay =N,
£¥y 21 } (10)
N121=N211

Before analyzing the state of stress in the core layer it is
convenient to see what relations follow from equations (4)
to (9) for the composite shell.

Statics of composite shell.—It may be seen that, in view
of the fact that all face-parallel stresses in the core layer are
neglected, the following expressions for the face-parallel
stress resultants and couples of the composite shell are
obtained:

Nn—<l+ ) Nt (1 h+t Nui an

;..\ 17_<1

L These are obtmned from the corresponding equations of reference 2 with «. changed to
ans and with stress couples and transverse shear stress resultants omitted. To make up for
this omission, the loads on the two membranes are assumed to act at their middle surfaces,
this means terms of the order /R are neglected (but not terms of order h/R).

3,,,+( h'rt N (12)
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Nﬂ=(1+ t) Nm+<1—ﬁ_—t Nis (13)
No=(1+5E5) M +(1—555) Now (14)
Mu—%t (1-{-’;;: Nn,,—(l ’H‘t) Nm (15)

21 M (=5 ] 9

M21=h; t (1+h+‘)Nm (1 h+t)N12, (17)
Bt

T (1434 Now—(1— A M| a9

In the same way the following expressions are obtained
for components of external force and moment intensity:

pu=(1+5) (14550 2t (1-555) (1= 5E)e
(45 (-2 )
(20)

e 1)

M22

(19)_

@)
Further, a load term of the following form will be
encountered: o
_1 htt b+t bt [, _htt
=3[ (+55) () (-3 (-3

(22)

which bears a relation to equation (20) similar to that which
equation (21) bears to equation (19). This last term would
represent, for a homogeneous shell, the average transverse

normal stress at any station of the shell, assuming that the |

loads ¢, and g, alone are responsible for this stress. For &
homogeneous isotropic shell this term is of no importance.

For a sandwich~type shell as will be seen, it ma.y sométimes

be of importance.

In order to obtain force and moment equlhbnum equa,tlons
for the composite shell the face-membrane equilibrium
equations (4) to (9) are combined suitably. Adding equa-
tions (4) and (7), and (5) and (8), respectively, the two equi-
librium equations for the force components parallel to the

middle surface of the shell are obtained. In order to reduce.

them to known form (see reference 2) the following relations
are used between the core-layer-surface shear stresses 7,¢.
and 7,;; and the transverse shear stress resultants ¢, and Q..

(+52) (15— (—5) (=)=
. (23)
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I G R )
24

Equations (23) and (24) will subsequently be shown to be
In agreement with the usual definition for the transverse
shear stress resultants by consideration of the stress distri-
bution of the core layer.

'With equations (23) and (24), there are obtained by com-
bination of equations (4) and (7), and (5) and (8)—carrying
out addition as well as subtraction—the following four
equations:

aaazz;t'u+ aaalél:.fﬁ!_ LM, _g:;_; M, g_zt:_,_ aan(m—Qy=0 (27)*
ouls | QoM | 1, 2% 14, 38 4 yenmi— Q=0 (29*

Two further equations are obtained by adding and sub-
tracting, respectively, equations (6) and (9). Adding equa-
tions (6) and (9) and taking account of equations (11), (14),
and (20), there follows:

oG- () ()

(: h+t><l ) oo

(29)

. In order that this reduces to the correct équ&tion of irans-

verse force equilibrium as given in reference 2, one must have

a1az|:<1+h+t) (1+7b+t

( i;;t)(l h+t batle

Equation (30), just as equations (23} and (24), can again be
verified independently by consideration of the state of stress
in the core layer. On the basis of equation (30), equation
(29) is written in the form

d 0 Nu , N
g"’s?l ——g‘&%— o (—1: -l--I—;f +oong=0

aa, Qz

Suhome (o)

(31

The last equation, use of which is required for the sand-
wich-type shell and which has not previously been given,
is obtained by subtracting equation (9) from equation (6).
Taking account of equations (15), (18), and (22), there

results
M“) 2a1ag_s+a1a2|:<1-I-h+t)<1+h+t)a';u+

()-SRl @

2(!10(2 Mn
h+t
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Provisionally, there is written

(1-1- 932) (1 +h+t) Uru-l-(l ‘)R2) (1 h+t) on=20tn
(33)

and it will subsequently be shown that oy, represents the
value of oy 2t the middle surface of the shell. Combining
equations (33} and (32) yields

-;-hfl_ . ”“-;—7”1%) §=0 Bo*

Equation (34) has no relation to the sixth equation of
equilibrium for an element of the shell which expresses the
condition of moment equilibrium about the normal to the
middle surface. That equation which, as is known, is an
identity when resultants and couples are expressed in terms
of stresses does not occur in the present derivations, or
rather it is contained in equations (12), (13), (16), and (17),
which give explicitly the slight differences between N, and
Nz[, and l‘rflz and .:‘«.[21.

Stress distribution in core layer.—In order to verify
independently equations (23}, (24), and (30), as well as for
the subsequent derivation of appropriate stress-strain rela-
tions, it is necessary to determine the distribution of stress
in the core layer.

Assuming that the components of stress ey, o3, and v, In

the core which would contribute to stress resultants and _

couples of the composite shell are of negligible importance,?
these components of stress may be set equal to zero and
only the components of trensverse shear stress and trans-
verse normal stress 7y, 7oy, and oy may be retained. The
differential equations of equilibrium for these three remain-
ing components of stress in the system of curvilinear coordi-
nates defined by equation (1) are obtained, from the general
form of these differential equations in reference 3, in the
following form:

M o
a; (H'R-,) (1 'R)”‘ = (36)
oz Lowes (1) (1) oe g [ (1) ]+

The values of the three stress components at the middle
surface ({=0) are designated by the subscript m. Integra-
tion of equations (35) to (37) then gives

R I @8
i (39)

AT R A SR

21t is for this purpose that the order-of-magnitude relation AE.f£Er<1 is assumed.

(4 (-

aap I:b& lo-tiz-?;rf%l) o Ok (10;'1 gmﬁg)] (40)

The transverse shear stress resultanis @; and @, are
obtained from equations (38) and (39) in the form

. (hi£)/2 _ L
Qn_f—(hﬂ):’z i (1 +Rm) ¢

P 1 1
= n T nim 1|h+f» ) ]b-l—t -
2R, 2R,

h t nim
1= 2R,

The integration must be extended over the thickness of the
core layer and also over half the thickness of the face layers,
in accordance with the prior assumption that the stresses
Tatuy Tuth, Otuw, 80d oy may be taken to act at the middle
surfaces of the respective face membranes.

Now, as intended, the proof is carried out of equations
(23}, (24), and (30), which were used to obtain the differ-
ential equations for the composite shell.

To verify equation (23), from equations (38) and (39)
for the left-hand side of equation (23), the following equa-
tion is obtained:

Tnim Taim _h+t Trim
| =R [_(hEIY
1+9Rt 1_];;: 1- %)

and this, in conjunction with equation (41), verifies equation
(23).

To verify equation (24) in the same manner, from equa-
tions (38) and (39) for the left side of equation (24), the
following equation is obtained:

h+t Tarm 1 Tntm — (h'{"t)‘?ni‘m.
2 H_h ¢ 1_h+t 1— h+E\?
2R, 2R, (W;
and this, in conjunction with equation (41), verifies equa-

tion (24).
To verify equation (30), equation (40) is used to write for
the left side of equation (30)

_b__ aTitm 7 2§‘m o) 2T 1tm
o <1+h_ t)-l—asz <1+ )+aa (1_h+t)+
2R, 2R2 2R,

i A Tatm =i 9&-;1'1;-,,,, _{_3_ 2‘2172{'1‘1
2R, ("Rx 2R,

and this, in conjunction with equation (41), verifies equa-~
tion. (30).

The section on the stress distribution in the core layer is
concluded by listing the form which equations (38) to (40)
for the stresses in the core layers assume for ‘“‘thin” shells,




488

that is, for shells for which A/R<1. From equations (38)
and (39), in conjunction with equation (41), it follows that

o
S (42)*
@

From. equation (40), in conjunction with equation (41), it
follows that

(43a)

K0T = | 0 T¢m

f Dang atlez
+i3s Tom )

It is necessary to note for some of the following considera-
tions that, in view of equation (31), instead of equation (43a)

there may be written
(Nu +N22 )

It is seen that in this approximation the transverse shear
stresses are uniform across the thickness of the core layer,
while the transverse normal stress is composed of two tcrms,
one uniform across the thickness and the other varying
linearly across the thickness.

No further calculations are needed with reference to the
state of stress in the composite shell. The next step is to
complete the system of differential equations for stress re-
sultants and couples by deriving an appropriate system of
stress-strain relations.

(43b)*

Gr=0tm—

At

STRAIN ENERGY OF SANDWICH-TYPE SHELL

In calculating the strain energy of face membranes and
core layer it is assumed that both are isotropic and elastic,
with elastic constants E;, v,=», G/=E;2(1+») and E,, v,
@.=E./2(1+v;). Poisson’s ratio for the face membranes is
written without o subseript, because, in view of the assumed
stress distribution, there is no explicit occurrence of Poisson’s
ratio », for the core layer.

The strain energy for the composite shell is the sum of the
strain energies for the face membranes and for the core layer

O=T,+1, | (44)

For the purpose of obtaining stress-strain relations, both
II, and IO, are expressed in terms of stresses rather than in
terms of strains. -

Strain energy of face layers.—Considering that the element
of area on the middle surfaces of the membranes is of the

bt

1 2 (o

H““z‘f f f_n_+_t (’E’
2

Again the terms {/R compared with unity are neglected and,
consistent with this neglect, the values of the stresses =, and
o are taken from equations (42) and (43).

The value of ¢; may be chosan from either equation (43a)
or equation (43b). The form of the results depends some-
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form ala,,(lih—}_t) (1 :l;h-l_t dt,dt, and that the siresses

in the membranes are the stress resultants divided by the
membrane thickness ¢, there is obtained, from well-known
principles, the following relation:

Hf=%ff% [Nuuz'l'szziz— 2 VN1123N2215+ 2(1 + V)Nxzuz} X

(1 +’”+t)<1 +h+t) crendidby 4

2J ftE [Nuz T Nm 2VN111N22z+2(1+V)N1212]X
(=55 (= ) et

Equation (45) is transformed into an expression containing
stress resultants and couples of the composite shell by means
of equations (11) to (18) which lead to the relations

2<1+h+t)Nuu Nn+h+tﬂ-{ll ( )
40

q(l—'h—t Nm =Ny—75M,

i+t

with corresponding formulas for N;; and Nyp. Note that
equations (46) and corresponding equations can be used to
calculate the stresses in the two different face membranes,
once stress resultants and couples in the composite shell are
known.

In what follows attention will be restricted to cases in which
h{R<1. Then, with the two constants €™ and D* defined by

0*=2tEf

- a7
D*=%t(h+t)2E} N

the following expression for II, is obtained:
=%ff { (% [N112+ N — 2VN11M2+ 2(1 + F)Nmz] +
I—;;._;[ﬂf 112+-Z‘1222—'21’5{11-&122'{‘2(1"{‘”)-&{122]} a;agd Eld & (48)*

It may be remarked that equation (48) could have been
given directly, by analogy with known results for the
isotropic homogeneous shell.

Strain energy of core layer.—With the stresses ¢y, og, and
712 assumed to vanish, there results for the strain energy of
the core layer

:'[‘E%T—x_z) CH‘E%) <1+R ) df“lazdfldfz (49)

what on which of the two equations is selected, in the sense
that the meaning of the deformstion quantities which are
to be determined depends on which of the two equations is
taken. This question is decided in the following manner:
As all resultants and couples enter the expression for the
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strain energy only as themselves and not in differentiated
form, except when equation (43a) is used, the sel=ction of equa-
tion (43b) for o; is proposed, thereby excluding derivatives of
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stress resultants and couples from the expression for the
strain energy II.
Introducing then equation (43b) into equation (49) yields

w3 | [ [ 1§tz [ rtn (B F-0)] Jesamdnas 60

The integration with respect to {is carried out and equation (50} becomes

J‘ f {Ql + Q)
(h+ NG, T
It was to be expected that the terms containing the

modulus of rigidity & would occur in the foregoing form.

The confribution of the present report up to this point,

besides giving the new equation (34) for oy, is thought to

be the determination of the form in which the effect of
transverse normal stress deformability manifests itself in
the strain energy of the sandwich shell.

STRESS-STRAIN RELATIONS FOR COMPOSITE SHELL

In what follows & system of stress-strain relations for the
composite shell is obtained by the use of Castigliano’s theorem
of minimum complementary energy. The manner in which
the theorem is used here appears to have been employed
first by Trefftz (reference 4) for the purpose of avoiding
geometrical considerations in the derivation of the stress-
strain relations for thin homogeneous shells with small
deformations, without consideration of the effects of trans-
verse shear and normal stress deformation.

Assuming for the present purpose that all boundary
conditions for the shell under consideration are stress con-
ditions, the theorem consists in the statement that among
all statically correct states of stress the actually occurring
state of stress makes the strain energy of the system a
minimum. In the application of the theorem the fact is
taken into account that statically correct states of stress
only are to be comparsd, by means of the Lagrangian

lff(o*["“‘

h—Lt [o'i'mz_l—lg Nn i iﬂ Q)z]}al—a"d&d&

(G1)y*

multiplier method. Before minimizing M an integral is
added to it which contains the six equilibrium equations
(25) to (28), (31), and (34), each of the six equations multi-
plied by a Lagrangian multiplier. It can then be shown, by
using Castigliano’s theorem with prescribed boundary
displacements instead of with preseribed boundary stresses,
that each of the six multipliers has the meaning of one of
the displacement quantities which oceur in the shell problem.?

With the foregoing understanding of the meaning of the

multipliers, the multiplier of equation (25) is designated by

wu,;; that of equation (26), by u,; that of equation (27), by
B:; that of equation (28), by B.; that of equation (31), by w;
and finally that of equation (34), by £ It is known that
%y, U, and w represent the effective components of displace-
ment in the &, &, and { directions, respectively. Further,
it is known that 8; and B; represent the angles through which
the normal to the middle surface of the shell turns toward
the & and & curves, respectively. There is no immediate
simple geometrical interpretation for k£ and, while such inter-
pretation in terms of an average transverse normal strain
might be deduced herein, k is considered as an suxiliary
variable presently to be eliminated.

Combining now equations (44}, (48), (51), and (25) to (28),
(31), and (34) in the manner indicated, the following varia-
tional equation results:

?979_911\ L.Z\ozT?(lTP)A 1

D% DB — 203 Mo b 21 Mmf]-!-
f f{m + 2;: a—?“l“z(ﬁﬂ’l)]““
e e e Y
8, _a“a‘-; Ol U“—,-Mu g‘;‘ M gg’-{-alao(ml Ql):]+
8, :a“g-;—’uﬁ"‘alz‘f—qr-wfu oA S cvan(me— QJ:[L
w :%-l—aalf?ﬁ—alaz(l\u Mo )]
Loty (S8 o @

3 For the special case of the flat plate this has been carried out explicitly in reference I. For the case of the homogeneous shell, without effect of fransverse shear and normat stress defor-
mation, the proof has been given in reference .  The proof for the more generul ease which is here considered is not ineluded as it does not offer any clearer insight into the problem and tends
to Iengthen the analytical discussion. .
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The variations in equation (52) are carried out and deriva-
tives of variations in the double integral are eliminated by
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it has been assumed that all stresses are prescribed at the
boundary and therefore their variations vanish at the bound-

integration by parts. The line integrals along the boundary | ary.
which occur due to this integration by parts vanish, because The resultant variational equation is
ff{aN [Nn Vsz 1 Eml Ug boq w h"l"t Nn Mz ):|+
" or OF1 03 08y By ' 12E.R;
sz—ﬂNn 1 a‘ug UL adz w h‘l‘t Nu sz
6N22[ C* 2] 352 25127} 351 RlezE Rz g):|+
5N, 2(1 —I"V)Nm 1 % Uy %_l bfu; ’uz aa2]+
1 o* o Ofs oo 0f; o 351 ayay 0F)
sM [Mu—VMzz 1 _5_13_1_ B3 Qﬂ 1 k
At D* o) 321 o Cg azg (h+t)R1 (2412 5]
M. [Mzz VMu 1 5132 l31 Oay | 1 k
2 D* [+ BEg Ollatg bsl_r(h"—t)Rz o &
M 2(1+9)Mis_ 1 aﬁlJ_ Bi da 1 2@_2 . Bs %]
1 D* 052 (33 : oo 08y o at‘l—[ ooy OF;
Y 1 ow
Aoy
B Q2 1 aWJ
5Q2 (h_l_t)G' +R2 52 P as + .
h+t k
. Saem _—E;— Otm +&E:| }a1a2d51d52=0 (53)
As all nine variations in equation (53) are independent of @ =B 10w ©1)*
each other, it follows that the contents of all nine brackets in (+DG. "*Vepdk R,
equation (53) must vanish separately, Thus the following A 1
nine stress-strain relations are obtfained for the sandwich L 1. N, S (62)
Eg 23825 (h'{_t)

shell, indicating with an asterisk those which appear in final

form,
Nu [1 +(h+t)0*] sz I: (h +0C*7]_
12E.R}? 12ERR. )
1 ou |, u do (ht+t)g (R
271 afl 25125 352 +12E‘,R1 (04)
Ngz (h+60* Nu hEHC*T]
[1 TERTC* [”‘12 EchRz_—_l—
10w, w dm, w (dy |
ap 0k ' ayan O +12Ech (65)
2049 Ar _on O ) %
T oF M= ap b&( @ 0& ( ) (56)
ﬂffu—PMzz 1 aBl 1 32 aa! k o (57)
.D* 5] 351 ! &) Cg a& (25122 (h'[‘t)Rl
Mzz_VMu__ 1 Qs_g 1 81 Doy k ] 1 (58)
D* [»/] b‘;’z ! [25¢27] DEI (24424 (h+t).Rg
2(14+» o Bt 0 (B _
D MI 24} 352 )_l_fxl 351 -f_x—;) (59)*
& low w
(RS TARP T 60y

It may be verified that the meaning of the quantities u;, u,,
w, B1, and B, 1s as has been indicated by comparing equations
(54) to (61) with the corresponding equations of reference 2
for the homogeneous shell with E,=@,= «.

The system of equations (54) to (62) may be brought into
a slightly more concise form as follows: Define the quantities
)\1, )\2, &nd 7\12 by
1 (40 E,

M=5 k2 E,
1 (G40t E
x2=§( j?;z) 2t (63)
N _1 (G40t B,
=3 RR, E )

and eliminate k from equations (57) and (58) by means of
equation (62) and the equilibrium equation (34). Retain
equations (56) and (59) to (61) in their original form and
write for equations (54) and (55)

1 1 _ 1 aul 'u2 bal
<1+§7\1)N11_(v—§)\12 Na=0C* Zaft a0y bEz R‘)+
(h4-0C*
IZEGRI 1 (64)*
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l _ _l 1 1 B'ug UL aaz Z)
(1+3 kg Nzg (P 3R12)N11—O o2 azg : s aEI ' .R +

(h+)C*

19ER, ¢ . (65)*

Equations (57) and (58) become, since according to equatmn
47) D¥(h+4) E.= (9t 10 Ef E.,

Mo (r—h M D (£ 2ty B 20)
A+NMu—G—MdMa=D* (- 5+ = S )T R, ®
(66)*
! ] 1f — )= lafg:‘. ﬁn Oa D*
WA= —MdMu=D¥ O 5,4 o0 38 ) TER:
o7)*

With these last transformations there is obtained a system
of equations which is formally equivalent to the correspond-
ing system of equations for the homogeneous shell. The 5
equilibrium equations (25) to (28) and (31) and the 8 stress-
strain relations (56), (59), (60), (61), and (64) to (67) are
used for the determination of 13 quantities: Five stress
resultants Ny, Nap, Ny, 1, and Qs; three stress couples
My, MMy, and 3Mi,; and five displacements and chenges of
slope u;, 4, w, 81, and B.. The quantity o, which occurs
in the sixth equilibrium equation (equation (34)) may be
determined directly, once the shell bending and stretching
problem has been solved.

It is seen that the effeet of transverse shear deformation
enters equations (60) and (61) only and that, when G, =,
these equations give the values of the known theory of
homogeneous shells without transverse shear deformation
(references 2, 3, and 4).

The effect of transverse normal stress deformation enters
equations (64) to (67) only. It is seen that it is, in part,
responsible for the occurrence of apparent stiffness factors
C*{(1+const. A} and D*/(1+const. M), Thus, according to
equation (63), the effect of finite E, is to make the shell more
flexible in bending and stretching than it would be with
E.,—w. This effect, however, is present only in curved
structures and not in plates and straight beams, as the
quantities A have one or both of the radii of curvature in the
denominator. A further effect of finite E, is occurrence of
the external Joad terms ¢ and s in the stress-strain relations.
Both these effects represent, roughly speaking, what happens
to the shape of an element of the composite shell if the length
of the core fibers in transverse direction is changed, without
any stretching or compressing of the face-membrane ele-
ments.

Having derived the general system of equations for the
small bending and stretching of sandwich-type shells, it
remains to apply these equations to specific problems which
may be of interest and to determine the quantitative effect
of the terms which are characteristic of the sandwich-type
shell. Some of this work is done in part IT of the present
report, which follows.

It may be stated once more that for these specific applica-
tions the five equilibrium equations (25) to (28) and (31) and
the eight stress-strain relations (56), (59), (60), (61), and
(64) to (67) are used.

O—APPLICATIONS OF GENERAL THEORY

FLAT PLATES

The problem of the flat plate is considered first in order
to show that the results of reference 1 are contained in the
present results and in order to solve some problems in the
theory of plates which have not been solved in reference 1.

Rectangular plates.—Using notation which is customary
in plate theory there is set

b=z &=y ay=am=1 R=R=wx)
=1 U= B1=8: B2=8,

Nu=N. Nu=Noy Na=N, Q=0 -9
Q=0Q, My=M, M,=3, Mp=2M,
P1=P: Pr=p, =M Mma=m,

The equilibrium equations (25) to (28) and (31) become

ON; , O,

dz W+ (69)
a;‘;%a%"wﬁo
22,20, , ]
%-l—agj’”—@ﬂ'-mﬁo o (70)
oL aalzf Ot 0

The stress-strain rela,tlons (58), (59), (60), (61), and (64)
to (67) become

N
Nz—vN,,=0* ng
Nmsll=Ot g - (71)
ou . On
PAEAN=C" oy Tos) |
Q=G0 (8457 )
(72
o
Q=R+ (5y+_aly"
M,—»M,=D* g_iz 3
M, — ] ,=D* %ﬁ;u | SR,
¥ a Ed D

As in the small-deflection theory of homogeneous plat‘es,
the equations for stretching (equations (69) and (71)) are
independent of the remaining equations for transverse bend-
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ing. Equations (69) and (71) for the stretching are mnot
affected by the elastic properties of the core layer.

Equations (70), (72), and (73) have been treated in refer-
ence 1 by means of a stress function ¢, which, together with
the deflection w, was taken as one of two basic variables.
In what follows an alternate treatment is given, in which the
problem is reduced to three simultaneous equations for the
quantities 8,, 8, and w. On the basis of these three simul-
taneous equations a problem not considered in reference 1
is treated, namely, the bending of a rectangular plate which
is simply supported on all four edges. This same problem
has also been solved by Donnell by & method which differs
from the one employed here. (See reference 5 where the
case of the homogeneous plate is considered.)

To reduce equations (70), (72), and (73) to three simul-
taneous equations for 8. B8,, and w, first a quantnt.y ® 18
defined by

e gy

Introducing equation (72) into the first of equations (70), in
view of equation (74), there is obtained

w+Viw=—g/(h-+1)G: (75)
where vZ = 0%/0a?10%/0y2

Next, @,, M., and M,, are taken from equations (72) and (73)
and the result is substituted in the second of equations (70).
This gives, after slight transformations,

D*
14»

V.~ 2066 o | Lo 2h-H)Gaw |+ =0
76)

In an énalogous manner the following further equation is
obtained:

D*
1+

VB — 2+ 6ub [D © b+ Gw |+ m=
)

In order to solve equations (75) to (77) two equations are
next obtained involving w and « only. Differentiating
equation (76) with respect to « and equation (77) with respect
to ¥ and adding the two resultant equations, in view of equa-
tion (74), give

fDV V2o (ke G, (w+v2w)+am= ba’;" 0
and, making use of equation (75),
“’—_D[ Bmx bm,,):l 78)

_ Omn
w_D ZZ O\mz‘l'ﬂnz)z l:l+

where w;, is the general solution of Vw,=—w,. It is to be
expected and may be.shown explicitly that for the plate
which is simply supported all around wy=c;=0 and, as in

DAn*+ p)
[(ETEA

REPORT 975—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

The following procedure may now be carried out: (a)
Solve equation (78) for w, (b) with this value of w solve equa-
tion (75) for w, (c) substitute w and w in equations (76) and
(77) and solve for 8, and B,, and (d) eliminate extrancous
terms in 8. and 8, by considering equation (74).

Before deriving the solution of a problem along these lines,
the explicit differential equation for w which follows by
combining equations (75) and (78) may be given

oM | bm,,)
az T oy (h+t)G

ViViw= I:q += 79

Note that the effect of transverse shear occurs on the right
side of the equation only. In order to compare the magni-
tude of the ¢ terms on the right of ecquation (79), assume that
relevant changes of ¢ occur over distances of order I (where
! may or may not be a representative diameter of the plate).
Then, as order-of-magnitude relations, there result

Ca q
W‘0<—"E,m2
(80)

(h-l—t)G’ =0 (l%@)

From equations (80), it follows that transverse shear ceases to
be a secondary effect as soon as [ is of order /it +/E,/G, or of
smaller order.

Bending of rectangular plate with simply supported
edges.—The edges of the plate are assumed to be at #=0,a
and y=0,5 and along these edges moments and deflections
are assumed to vanish. Further,

m:r,'= my= 0
. o 3 . . (8 1)
=m2=1 n;l Gz SIN Ap@ SIL [,
where -

An=mmla
!

F-n=n1!'/b

* From equation. (78), it follows that

“’—‘D“ ZZ g,,,,, ottt sin Ap2 sin g4+ oy (83)

where o is 2 harmonic function. Putting equatmn (83) into
equation (75),

1/D N .
Viw=—>3 nns [Xm’{kunz } (h—}-lt)Gc] SIN Ap® SIN Y —ay

which is integrated to
8in A, Sin g,y +wy (84)

the Navier solution for the plate without transverse shear
deformation, the particular integral is the complete solutlon
of the problem
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Equation (84) may be rewritten in the more explicit form

493

b5 ()]

at
W=D 2320 [ mit
When G.= =, equation (85) reduces to Navier's solution
wy. Equation (85) 1s more readily interpreted by means of
the ratio wfuy of deflection with and without transverse

2(az/ b9

sin % 5 sin 2T b y (85)

shear deformation. On the basis of equatian (85), there may

be obtained the following equation (86),

r

g DTy
w_"TEEDG_ | (RHHE, Vwy
. vy wy 20— »G wy

Omz S
2 B, (i X e nX(ay5)

in mrz/a sin nxy/b

(86)

Setting /2(1—»*)=5.4 and (E/C)i(h+1v)/e*=8B, equation
(86) takes on & form which contains as a special case Donnell’s
result of equation (18} of reference 5.

For the case of a uniform load intensity g=Constant and
for the c¢enter of the plate (x=a/2, y=05/2) equation (86)
becomes

sin m=f2 sin n=#/2

» 4 ~ E, (h+t)tzz\‘ mn[m>*+n¥a?b3)]

wy ' 20—AE a? sin m=/2 sin nxf2

222 mn[m?+n%(a?/b9)]?

37)

The ratio of the series is 1.98 when ¢/b=1, and the ratio of
the series is 1.11 when afb=1/2.
For the case of a concentrated load at the center of the

plate the deflection ratio at the point of load application.

assumes the form

(sin m«/2 sin nxf2)?
w_ P B (it 22 e
Wy 2 (1—»)G. a® in mw/2 sin nx/2)?

(st
ZZ [_m2+,n2(a2/b2)]2

(88)

Now it is easily shown that the numerator series in equation
(88) does not converge and consequently w/wy=—« In this
case. A more detailed consideration shows that in any plate
theory which takes transverse shear deformation into
account the deflection under the point of application of a
concentrated load must become infinite in contrast with what
happens when transverse shear deformation is not taken into
account. This difference, of course, vanishes as soon as the
load intensity becomes finite, and then the theory with trans-
verse shear deformation taken into account is more accurate
than the theory which does not take into account this effect.

For the sake of numerical illustration take again the
square plate (e¢/b=1) with uniform load distribution.
According to equation (87), the deflection at the center is
increased because of transverse shear by the factor

1
____1_,_9 v B E,(h '.,t)t
Wy G a?

(87a)

Take h=1.0 inch, ¢=0.1 inch, ¢=10 inches, E,/¢,=200, and
»=1/3. Then, sccording to equation (87a}, w/wy=1-+2.3, so

ma S Marzfa sin nayfb
EZ q T / wYi

[m?+n*(a®b)]*

that in this case the deflection with transverse shear is more
than three times the deflection when shear deformation in
the core is neglected.

Returning now io equation (84) for w and equation (83)
for w and substituting these two equations in equations (76)
and (77) in order to determine the changes of slope 8, and 8,,
after slight transformations there results

mnkm
B.= D 2 (Rg TR COS AnZ Sin g,y
(89)

_ anﬂ-n .
By= D Z}Z it sin ApT €OS p.Y

Equations (89) are remarkable for the reason that they are
not affected by transverse shear deformability. According to
equations (73}, the same is then frue of the bending and
twisting couples AL, 3L, and 3, It is not easy to see
why, in this statically indeterminate problem, the magnitude
of the internal forces does not depend on the elastic proper-
ties of the core. The analysis, however, shows that the
distributions of 3., 34,, and Af,,, and therewith of €., and
@,, remain the same as those obtained under the assumption
that .= «. In this connection the following remark may
be made.

Evidently the following three boundary conditions,
w=M,=8,=0 along the edges x=0,az, have been sa.tlsﬁed
In order that the last of these three condit—ions be satisfied
there are necessarily nonvanishing edge values of the twisting
couples 1f,,. The same is true in the theory without trans-.
verse shear deformation, where, however, no alternative
possibility exists, as in that theory only the boundary condi-
tions w=AL,—0 are relevant. For the present system of
equations three boundary conditions must be formulated for
every plate edge. Thus, it is possible although mathemat-
ically complicated to solve the problem of the rectangular
simply supported plate with the edge condition B,=0
replaced by the condition 1f,,=0. In that case, which will
not be pursued here, there evidently will be a distribution of
internal stresses which is modified by the effect of transverse
shear deformation.
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Cylindrical bending of plates.—As a further relatively
simple example of application of equations (70), (72}, and
(73) problems are considered for which

a( )foy=0

o( )oz=d( Mde=( Y
M,=Q,=m,=p,=0
M,=vM,

(90)

and where consequently the problem reduces to the following
system of equations:

@ +g=0 3
M, — Q.+ m.=0
Q:=(h+8)Gc(B,+w")
(1—AM,=D*g’

(91)

Note that in order to obtain the problem of the sandwich .

beam from equations (90) and (91) the only changes which
are necessary amount to setting »=0 in equations (91).

To set into evidence the effect of finite values of G, in
equation (91), the following system of equations is deduced
from. equation (91):

r

DwvV=g¢g+m,’—

(qut)”('; (92)
M= —Dw'?—m%g@; 93)
Q”=_D“’”""(h-€—§),§c+ My (94)
s (s (95)

Solutions to the following problems are listed:

(1) Simply supported plate of span [ carrying o load

q=qo cos wx/l. Boundary conditions: w(+1/2)=M.(+l/2)
=0. '

wlo[ 147 E;, (h+Ht] cos mafl

DL 2 (1—-AG P (nfl)

The factor in brackets may again be written in the form
1+5.48, with B=(E,/G,)/[(h-+1)i/l?], using the notation
suggested in reference 5. As the problem is statically
determinate as far as moment and foree are concerned there
is no modification of M, and @, due to the finite value of &..

(2) Simply supported plate of span l carrying a uniform
load g=¢q,.

1%°f;{24[(l/2) 1] [1+(h+t)052][(l/2) ]}.(97)

From this there is obtained for the center deflection,

_ 5 gl[.,2¢ E,  (htoy
wO=357p I: 5 (1—52)0 I :I

-(96)

(98)
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Tt is seen that the correction factor for the center deflection

is almost the same as that for the cosine load curve (equation
(96)), the only difference being a change of the factor
22/2=4.93 into 24/5=4.80; that is, a reduction of the shear
correction factor by at most 3 percent is present. Note
that according to equation (87a) the shear correction factor
for the square plate of width e=! is morec than twice as
large as the shear correction factor for the plate strip of
width .

(8) Built-in plate of span I carrying a uniform load g=qo.
The boundary conditions are: w(£!/2)=p8,(£1/2)=0 (and
not &' (£1/2)=0).

w= 3840{[@/2) - g3 P][(z/z) i} o9

From this there follows for the center deflection,

__[ B, (bt
384D a—na. E

Comparison of equations (100) and (98) shows that for
the built-in plate the effect of transverse shear deformation
is very much more pronounced than it is for the simply
supported plate, a factor 24/5 in the latter case being replaced
by a factor 24 in the former case. A somewhat similar per-
centage increase must take place in going from equation (86)
for the rectangular plate with all four edges simply supported
to a formula (which has not yet been derived) for the rec-
tangular plate with all four edges built in. As a further
result in this problem of the built-in plate, by putting equa-
tion (99) into equation (93), it is found that the moment
function M, does not contain any terms depending on the
effect of transverse shear deformation. This again is some-
what surprising as in this case it is not possible o determine
the moment function by statics alone. As a problem where
the moment distribution is in fact dependent on the effeet
of transverse shear there may be mentioned the problem of
the cylindrically bent plate with both ends built in, which
carries a load ¢=gq instead of the load gy=ge This
problem also may be solved by means of equations (92) to
(95).

Circular plates; rotational symmetry.—As no examples of
solutions of circular sandwich-plate problems have as yet
been published and as it is of some interest to determine in
which way the shear correction factors change in going from
a ploblem for the plate strip to the corresponding problem
for the circular plate, the equations for axisymmetrical trans-
verse bending of circular plates are briefly discussed.

Polar coordinates r,6 are introduced and notation which
is customary in plate theory is used. As a consequence of
equations (70), (72), and (73), the following system of equa-
tions is obtained:

w(0)= 1+24 (100)

dr@,ldr+rg=0
} (101)
drM.fdr—Ms—r@Q,+rm,=0
QT=(h+t)Gc(ﬂr+d'w/dr) (102)
M, —vMy=D*dg./dr
} (103)
Mi—vM =D*8,/r



SMALL, BENDING AND STRETCHING OF SANDWICH-TYPE SEELLS

According to equation (79), the equation for the deflection
w will be
. 11drm, Vg

DYVw=g+3 L = —Ga.

(104)
where V*=(1/r)d{r d( )[dr]/dr. Having found w by means
of equation (104), 8, may be determined from

dw Q. _dw l

b= Te e & T (105)

rg dr
and therewith Af; and Af; are obtained from equations (103).

In the present problem it seems to be somewhat more
convenient to proceed as follows: Combine equations (101)
and (103) to obtain as equation for the change of slope 8,

[ (1 drﬁ,) _ 1 drm,
rdr ar\r ar /179 7 ar
Having 8,, A, and M, are found from equation (103) and
@;, from. the second of equations (101),

(106)

dB, v
ZL{,-—D +;‘ﬁr)

(107)
=D (2o, 4+ %

d (1drg,
G=DF\5 g )+ ™ | (108)

Finglly, with this value of §,, w is found by integrating
equation (102),

(109)

Ldrg\ | S md,
—JSBdr+ (h—i—t)G’ (r dr )T(h—!—t)Gc

Deflection of ecircular plate with built-in edge.—The
bending is now considered of a plate with transverse load
g=g¢.(r/fa)"® and with m,=0. First, from equation (106),

gaa "
Dg, -—cl—-l-ca ) 4¢3 10ge +(n+4)(n+")2()
(110)

Attention is restricted to complete plates with no con-
centrated load at the center, and consequently it is necessary

to set c;=¢;=0 in equation (110). This gives
r gna:i z+3
De=e g+ rana) (1102)

Putting equation (110a) into equation (109), there results
for the transverse deflection w

[ﬁ( )+(n¢4) (n+2)2 G el

sotin i )

Taking the case of a plate of radius ¢ with built-in edge,
that is, with the boundary conditions

8Ha)=w(a)=0

D—=

(111)

(112)
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there results
qnas +3
Do (&) 2] @9
and o
e In@* ((f@)*Ti—1 1 (rfa)’—
Dw= (n-+2)2{ (R R
D r\+?
R DG, [(E) _1}} (e

From equation (114) there follows for the deflection at the
center of the plate

— g=a* (n+ E, (R0}t

DO =gy ram Lt e T e | (19
Consider the following special cases:

(1) Uniform load distribution ¢,=gq,- From equation

(115), there follows for the ratio of deflection with and
without transverse shear deformation

w(0) E, (4Dt
[w(0)g,- (-G o

Equation (116) may be compared with equation (100) for
the deflection of the infinite plate strip of width [ with built-in
edges. Setting [=2a, it is seen that, while the transverse
shear correction factor for the strip has a value 6, the corre-
sponding factor for the circular plate is 8. This is consistent
with the earlier comparison between the simply supported
strip and the simply supported square plate, except that
there the change is from 4.8 to 9.7.

=148 (116)

(2) Linearly increasing load distribution g=qrfe. From
equation (115}, it follows that

w©) .., 25 E, (i)t .

WOlen T3 A—G & an

showing that the correction effect is only slightly greater
than in the case of the uniform load distribution.

(38} Load increasing linearly from edge to center, ¢g=q,+
q(rja). (@=—q). From equation (115), it follows by
superposition that

e E,
D w(0)= "X"Xlﬁ[l 8 556,

_&[H_ 5 _E (h+t)t]
2% 3X25 3 1—»AG a?
43q.at [1+3000 E_r (h+t)t
32X150 387 (1— a?

(h-l—t)t]__

D w(0)=

(118}

Comparing the factor 3000/387=7.76 which occurs in equa~
tion (118) with the corresponding factors 8 and 8.33 in
equations (116) and (117) it is seen that, in the foregoing
three problems at least, there is little difference between the
transverse shear stress correction factors in the case of three
different loading conditions for the circular, clamped-edge
plate. The faet that this agreement should not be expected
to hold generally follows again by considering the case of a
point load at the center of the plate, for which the shear
correction factor would again be infinite.
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The examples of this section should be augmented by the
solution for the circular plate of radius @, which carries a load
distributed uniformly over a smaller circle which is concentric
with the boundary of the plate.

CIRCULAR RINGS

As the simplest example of a curved sandwich structure
there are considered in this section stresses and deformations
of circular rings in their own plane. As was found in the
general developments of part I of this report, in a curved
sandwich structure there will be the effect of both transverse
shear and normal stress deformation. (The effect of trans-
verse shear stress deformation on homogeneous circular rings
has been considered by Beskin in reference 6.) _

There are set for the relevant coordinates and variables

El=a;0 a1=1 W

R]_=a U=

BI=B N11=N

h=Q _ My=M | (119)
»=p My=m

o )fot=d( Yado=()/a
M=N=5{h-+11fa7] (B E)

The equilibrium equations (25) to (28), (31), and (34)
reduce to the following equations:

N! =
+@+ap 0} (120)
@' —N+ag=0
M —a@Q+am=0 } (121)
orm=38—[M[(h+t)a]

The stress-strain relations (56), (59), (60), (61), and (64)
to (67) reduce to the following equations:

(1-]—— x)N— 0*[ "o +(’1”;§g (122)
Q=(i+06. [ p+1 @'~ | (123)
a+0U=1 D(p+) (124)

The load terms p, ¢, m, and s are given, according to °

equations (19) to (22), by

_(1+fb+t u+<1—h+t
=(1+5th) at(1-20,
.
A0 (5]

-~

r (125)

“order 1000 or more.
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Ring sector acted upon by end bending moments.—As &
first problem on circular rings, which illustrates the effect of
transverse. normal stress .deformation, there is taken this
basic case for which, as is known, there must be the same
stress distribution at all sections § = Constant of the ring.

According to equations (120) and (121),

- N=Q=0
M=M,
oem=—M/(h+ba

(126)

Equations (122) to (124) become
v’ +w=0
ﬁ-l—(w’—-'v)/a=0}
(1 +R’).ZL’[0=D*ﬁI/a

(127

(128)

The significant result of this consideration is contained in
equation (128), which may be written in the alternate form

D* Bl D* If+w

a I—H\ 1+t B, —a®
+10ETE

M=M, ~(129)

Thus, in this case of pure bending the transverse flexibility
of the core is responsible for a reduction of the bending still-
ness factor D*= (%)t(h-+£)*E, which is obtained exactly when
E,=0 and practically when E, is of the same order of magni-
tude as E;. Equation (129) shows that the reduction of ¥
is significant whenever E, is so small that the ratio E./E, is
of the same order of magnitude as the ratio (h-2)¢/a®.

As a numerical example take the following values: 2=0.9
inch, £=0.05 inch, a=20 inches, and E,/E,=1000, for whick

1+t B 1><° .95X0.05

@ E, 200 X1000=0.0595

V]

indicating a reduction in bending stiffness of about 6 percent.
Changing ¢ from 20 to 10 inches changes the effect from 6 to
24 percent. Changing E,/E, from 1000 to 2000 increases the
effect from 6 to 12 percent. Altogether it may be said thet
this effect is of noticeable magnitude for some geometrically
reasonable structures when the modulus ratio Z/E, is of the
Assuming aluminum face layers with
E;=10" psi, this means that E.~ 10* psi, which is well within
the range of some present-day core-layer materials.

" Comparing equation (129) with the earlier formulas for
the effect of transverse shear stress deformation, for instance
with equation (116) in which a represents the plate radius,
and observing that G, =~ (¥)E,, it is seen that the corrcction
terms are of the same form, the difference being an appreci-
ably larger numerical factor in the expression representing
the shear effect.

Closed cireular ring acted upon by uniform radial load.—
Having rotational symmetry, d/d6=0 and v=8=0. Also set
p=m=0. Theremaining equations permit the determination
of the stresses in the face and core layers in a way which
depends on the extent to which the load is applied to the
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outer (upper) and inner (lower) face membranes. Equation
(12} becomes
N=aq (130)
From equations (121), it follows that
orn=8—[M[(h+1)a] (131)

‘The stress-strain relations (122) to (124) give

w_ 1 Y _(h—l—t)g_aq[ A GR+DC*)_aq
a OCF 1+3)agj 12E,a CF 14 12E.a* | O*
(132)
and )
., D* s
JI—-I—_:_—}\EE (133)

A closed circular ring subjected to & uniform radial load
distribution ¢ is stressed not only by a uniform axial force
N'=ag, as would be expected, but in addition is stressed by
a uniform bending moment Af, the magnitude of which is
given by equation (133). The explanation of this result is
that for a ring with relatively soft core the circumferential
stress distribution depends on the extent to which the
external radial load is applied to the inner and outer forces,
respectively. Roughly speaking, for a sufficiently flexible
core layer the load ¢, goes predominantly into the outer
face layer, while the Ioad ¢; goes predominantly into the
inner face layer.

According to equations (46), the stresses in the two face
layers are given by

Nu=3 N4

+
1
1

b

(134)

N= N A

R+t

According to equations (130) and (133) and in view of the
definitions of D* and A, this may be wriften

a 2\s
_§<Q+1+>\
Ar O f 2As
Ni=5(e—15x

Combining next equations (131) and (133), for the trans-
verse normal stress in the core layer, the following expression
is obtained:

(135)

3

5;m_1+)\ (136)

For a specific example assume that the radial load is
applied entirely to the inner face of the ring so that g,=0
and, according to equation (125),

" ki
=(1—"55") ¢
(137)
1 h+t
s.___‘_‘?:(l__‘lg. ¢ .
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With ¢ and ¢ g1ven by equations (137), equations (135) and
(136) become :

<1_@I? aq:
14-% :
N (138)
N‘_l (1 h+t (1-{1:3\7)\%;
1 h+t 13
- (1 L (139)

It is seen that the flexibility of the core layer increases the
circumferential stress in the loaded face layer in the ratio
(L+20)/(1+2) and decreases it in the unloaded face layer
in the ratio 1/(1+4\), where M is defined by equation (119),
compared with the equal values of these stresses when
E—=ow,.

Considering once more the numerical date under the sec-
tion entitled “Ring sector acted upon by end bending
moments,” it is found, for instance, that the stress in the
inner face layer may be about 6 or 12, or 24 percent higher
than the corresponding stress calculated without taking into
account the transverse flexibility of the core layer.

Ring sector acted upon by radial loads ¢, and ¢, uniform
in circumferential direction and with vanishing resultant g.—
Again it is assumed that d( )/dé=0, m=p=0 and now In
addition that ¢g=0, so that, according to equation (125),
the only nonvanishing load term is . Further, it is assumed
that the ends 8=-4« of the ring sector are free of stress,
that is, N(L a)=Q(La)=M (L a)=0. The ordinary theory
of circular rings would then indicate the absence of deforma-
tions in the entire ring. In the present case there is found
& type of deformation peculiar to the sandwich ring, which
may perhaps be compared to the action of a Bourdon gage.

Solving first equations (120) and (121) and satisfying the
end conditions of the ring sector,

N=@Q=M=0
} (140)
Cem=¢§
The stress-strain relations (122) to (124) are then
v’ +w=0
af+w—uv=0 (141),

Assuming s independent of 8, from equation (141) there is
obtained by integration, with constants of integration 4,
A, and A,

S o1 4 h
. =——E5+ 1
p=— FB +Aa+A;cos 8+ A4;sin 8 (142}
8
w=a,E + A, sin 8— ;5 cos 8 J
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As a specific example consider a complete ring, slitted
radially at the section #=m=, so that a==. Prescribe fur-
thermore the symmetry conditions B(0)=v(0)=w(0)=0.
Under these conditions there is obtained from equation (142)

Ep=—z6

E.,p=-—as{(0—sin 6) (143)

E. w=as(1—cos 6)

From equations (143), it follows that the radial slit, which
is of zero width before the loads ¢, and ¢; are applied, opens
under the action of the loads to a width given by

) () = 2 S Qir_t) I
o{—m)—v(@)=27ra Ec—-z'm (1—[— 50 ) E (144

For a numerical example take =10 inches, A=1 inch, {=0.05
inch, E.=10,000 psi, and ¢,=20 psi, and obtain :

#(—m—o{x)=0.132 inch ~(145)

The foregoing three examples of ring analysis have been
discussed in some detail, because they illustrate relatively
simply the effect of transverse normal stress deformation in
the theory of curved sandwich structures, without involving
at the same time the effect of transverse shear stress
deformation.

Bendlng of semicircular nng by end shear forces.—A
problem is now considered in which both the values of E,
and @, affect the result of the analysis. In the equilibrium
equations (120) and (121) all external load terms are set
equal to zero and then, by integration and from the boundary
conditions, that is, from

v () =m(+5)-

(146)
o(+5)==@
The following expressions for N, M, and @ are obtained:
' Q=Q,sin 6
N=(Q,cos ¢ (147)
M=—a,cos 8 .
- The stress-strain relations (122) to (124) become .
(1+)7/3)Qy cos 8=(C*/a)(v'+w)
Qo sin 8=(h+HGc[8+ (' —v)/a] (148)
—(14+N) Qo cos =(D*/a)s’
Integration of the last of équations (148) gives )
D*g=—a*(1+N)Q, sin ¢ (149)

where a constant of integration has been eliminated by means
of the symmetry condition g(0)=0. Substituting equation
(149) in the second of equations (148),

2(1 +>\)

(w —v)=@, sin a[(h-f-t)G +
1 (h+o)t

a?

13.“ Ef) (150)

Simultaneous solution of equation (150) and the first of
equations (148) for » and w gives as general expressions for
v and w,

=@, sin BD* [1+

v=2A0 cos 8-+ A, sin 8-+ Ay cos ¢ . } 151
. 151
w=A0sin §—(4,+B) cos 8+ A, sin 8

where A; and 4, are arbitrary constants of integration and
A and B are found to be

4 [1 4L (h—l-t)t(EU L), Do (1 +>\>:|

- [ S (B ) (][

- As further conditions, it is prescribed that (0) =2(x/2) =0,
which makes 4,=A;=0 in equation (151). There remains

(153)

1)=f‘10 cos 6 }
w=_A8sin §—B cos ¢

Of particular interest are the values of w(«/2) and w(0),
the first of thesc giving the radial deflection of the point of
load application, the second giving the change of radius at
right angles to the applied load. It is found that

‘w(%)= T rQoa,S[:1+1 (h-|—i)t + s (1+7\>:|

242 DF
(154)
lQaﬁ 1 (h+0t/ E,
wO==B=—5 [l+° (7t <1+3>]
(155)

Equations (154) and (155) contain the interesting result
that, for this problem, transverse shear and transverse normal
stress affect the outcome formally in nearly the same way.
If the generally unimportant terms with D*/a*C* are omitted,
which aemounts to the usual assumption of circumferential
inextensibility of the ring, then the effects of finite £, and
@, occur in exactly the same way.

For a numerical example take £=0.9 inch, {=0.05 inch,
@=20 inches, E,/E,=1000, and E;/G.=2000. This gives

TGent 1 D* - htt?_ 1
2" aF 16,800 C* & o 1770
no LGt B 1 1G4t B 2
~3 o E, 168 2" o G 16.8

The factors in brackets in equations (154) and (155) become

1.2 . 1 1
It1est68 71770 (H‘sxls.s)“l'18

1. 2 1 1
6.5 7168 1770<1+3><16.8>_1'18

and

14
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Thus, i the present example the flexibility of the core is
Tesponsible for an 18-percent increase of deflection-load ratio,
and of this 12 percent is due to transverse shearing and 6
percent to transversenormal stress. Compared with thesetwo
effects the effect of circumferential extensibility of the com-
posite ring is seen to be negligible. As a further numerical
illustration, it is noted that reducing the ring radius ¢ from
20 to 10 inches, with all other data unchanged, changes the
18-percent correction to a 72-percent correction.

Bending of complete cireular ring under action of two
concentrated radial forces at f=+7/2.—The solution of
this problem may be obtained by superposition of the solu-
tions for the semicircular ring under the action of end shear
forces ¢, (equations (146) to (155)) and under the action of
end bending moments 3, (equations (126} to (129)).

The first step consists in determining M, in terms of ¢
such that the sum of the g’s from equations (129) and (149)
assumes the value zero for §==/2; that is, the value of the
superimposed bending moment at §==/2 must make the
tangent to the deflected ring at this point horizontal. Com-
bining equations (129) and (149} in this manner, there is
obtained
14+
D*

g aid, 11—){;7\ a?@Q,=0
or :
My=(2/m)a Qe (156)
It may be noted that equation (156) is a further case of a
statically indeterminate problem where transverse shear and
normal stress flexibility do not affect the internal force and
moment distribution but affect only the state of deforma-
tion of the structure.

Further, the radial deflections w(x/2) and w(0} due to the
action of 1f; are calculated, in order to combine them with
equations (152) and (153). Integrating equations (129) and
(127) with the boundary conditions #(0)=z(#/2)=0, there
is obtained for the displacements due to 1,

D*y=—1 +)\)ﬂfoa2<1 —g cos 6)

(157}
*pr =(1+N)Aa (8—— sin 6)
and, in particular,
D (0) =(-+N3a2(5-1)
(158)

D*w (’21)= —(L+N)Ma?

Combining equations (158) with equations (154) and (155)
and taking M4, from equation (156), there follows for the
resultant displacements

<@ (Db
w(o)__g‘@:{(%—é)(l—{-}\)—i-%[kc 20*(1+7\)]}

(159)

- where Ag=
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(hz_t,?t %h&s been put as a further abbreviation.

Equations (159) may be written in the alternate form

w@)_o 149 Q“"’ {1+x+5 29[xa+ 20*<1 +")]} (160)

Z=(+5)] e

When A=Xg=0 and when the composite ring is assumed
axially inextensible, which amounts to putting D*/e?C*=0 in
equations (160) and (161), then equations (160) and (161)
reduce to well-known resulfs of circular-ring analysis.

Comparing equations (160) and (161) for the closed circular
ring with equations (154) and (155) for the open semicircular
ring, it is noteworthy that for the semicircular ring A and A¢
occur with equal weight, while for the closed circular ring the
influence of A¢ is considerably greater than the influence
of A. Thus, for the closed circular ring the effect of
transverse shear deformation is much more important than
the effect of transverse normal stress deformation, while
for the open semicircular ring both effects oceur in a mueh
more nearly equally important way.

For a numerical example of the use of equations (160) and
(161) take agam the values for the numerical example given
in the section entitled “Bending of semicircular ring by end
shear forces.” This gives for the expressions in braces

w(0)=—0.137 %ﬁ {1—{—7\4—3.65 Ao—

1 |, 2X5.29 , 5.29

1 —
M55t 168 t17r0 109
and
1 . 2X3.65 . 3.65 .
I —
l+158T 168 Ti770- 190

Thus, while the effect of transverse stress deformation for the
open circular ring amounted to 18 percent, the corresponding
corrections for the closed ring are 69 and 50 percent,
respectively.

The next step in the analysis of sandwich-type circular
rings would be the general solution of the system of equations
(120) to (124) for arbitrary load distributions. This, evident-
ly, is possible and further specific examples of interest might
be analyzed on the basis of the general solution.

CIRCULAR CYLINDRICAL SHELLS

In this section the general system of equations of part I
of this report is restricted to the equations of the theory of
circular cylindricel shells. The treatment of sandwich-type
shells of this kind is shown to be not appreciably more
difficult than the analysis without the effect of transverse
shear and normal stress.

As specific examples, some problems of rotationally sym-
mefric deformations are treated. Im particular the influence
coefficients are obtained for a semi-infinite shell acted upon
by bending moments and transverse forces at one end of the
semi-infinite shell. With these influence coefficients an
explicit solution is obtained for the problem of the infinite
circular cylindrical shell acted upon by a pressure band of
zero width.
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In the general equations of the problem there are set for
the relevant coordinates and variables,

fH=af L=z Ri=a
By=o Nu=N; Nypy=N;

Q1= Q=0  My=M,

My=M, U=2 Up=1U | (162)
B1=8¢ Bi=8: my=Ms
M= My Pr=De D=z
a=a=1
Nu=Nu=Nw  Mu=My=M, |

The equilibrium dlﬁ?erentml equatmns (25) to (28) (31),
and (84) become

aa]iz ;aé\:;"+? o)
aé\;zaﬂlt a£“+Q’+ =0 & (163)
Sotg %%f—%"ﬂ?" J
a;\g, ;agzgze tm=0 (164)
bgiza iag‘g& Qa+ma=d

“fm=s_(h_1+1%5 (165)

The stress-strain relations (56), (59), (60), (61), and (64) to
(67) become, with Ay=X;3=0,M=(1/2) [+ )t/a*|(E/ E)=],

(1+—)Na——v1\ =0+ L2020 Gt

12ar,E
N,—vNy=C* - (166)

bw
1ou

e
201+ )Nu=0 ax 55 )

Q=R+ G, (ﬂa-i-i bazg %/

(167)
Q=0+1)6, (ﬂz v

(LN My— b= D* (L 2o _§ )

a 06 'ak,

a £ -
M,—M,=D* (a—i) L (169

* aﬂe 1 28,

When @,=E,= » (and therewith A=0) equations (163),
(164), (166), (167}, and (168) reduce to the known system of
equations in which deformations due to transverse siresses
are neglected. The solution of the present systém of cqua-
tions is not essentially more difficult than the solufion of the
system with G,=F,= ». In particular also here there may
be obtained a- trigonometric double-series solution, as a
generalization of Navier’s solution for the flat plate (references
7 and 8).

For this trigonometric double-scries solution there is sef,

g=3" " ¢mn sin m0 sin na/l
Po=21) > Pamn COS M8 sin naxfl
=23 > Demau sin mé cos nafl
My=2 D Mamy SI0 MG cos nxfl [
Mg=1 > Mina €08 mb sin nxfl
§=37 2 8mn sin mé sin nzfl

(169)

W= 2} Wne SI0 MmO sin nx/l
V=27 > Ums cOs mé sin nzfl
U= > Umn SN M cos nz/fl

=27 2 Bemn sin m0 cos nafl
Bs=2>1 > Bowmn cos mé sin nafl
Q=33 Qinan sin mé cos nzfl 3
Qe=>1>" Qoms cos mésin nxzfl
+ (N Ny=23>" (Namn, Noma) sin mé sin nzfl
l Neo=22>" Nyoua cos mé cos nafl
Mo, Mg)=>_>" (Memn, Mons) sin mé sin nafl
- My=3>"3 Mma cos mé cos nzfl J

(170)

- (171)

‘When equations (169) to (171) are substituted in equations
(163) to. (168) there remains for every value of m and n a
system. of 13 simultaneous equations for the 13 TFourier
coefficients which oceur in equations (170) and (171).

A system of only five simultaneous equations for the five
Fourier coefficients in equation (170) is obtained if first
equations (163) and (164) are reduced to five equations for
the five unknowns w, v, %, B;, and By, by means of equations
(166) to (168).

For the present, the task is not carried out of obtaining the
deformation and internal stress Fourier coefficients of
equations (170) and (171) in terms of the Fourier coefficients
of the load terms in equation (169). Instead, the axisym-
metrical case, to which equations (169) to (171) reduce when
sin 76 and cos m@ are interchanged throughout, and then only
the terms for m=0 are taken, is treated separately.

Axisymmetrical deformation of circular cylindrical shell—

In equations (163) to (168) set

"o Yoe=0 o( Jfox=( )Y
= Qe=M,=0 (172)
v=8s=0 My=Dpy==0
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and then the following system of equations has to be dealt
with:

ATzI+Pz= 0 ?

3 (173)
Q. —(Nofa)+q=0}
.4.1':[5,_ g;' =0
QM } 74
cen=8—Ms/(h+t)a
AN ar_ ar_ w , (h+d)q
(1+3 Ne—sN:=C*| T+ 15000 a75)
No— v Np=C*y’
Q=+ G(B+ ) (176)
(1+MMy—»M,=D*s/a E,
(L77)
AL —»A,=D*8,

The system of equations (173) to (177) may be reduced to
two simultaneous equations for S, and ., as follows: First,
express Af; in terms of B, by means of equation (175) and
substitute the result in equation (174). From the first of
equations (177), it follows that

D*s
(1 +N)a E,

1+ 7\

and this, introduced into the second of equations (177), gives

(l + X)D* vD*s
Ly A En -

M= (179

Equation (179) is introduced into the first of equations (174)
and, restricting attention to shells of uniform section prop-
erties, there is obtained

+ND*,, D% .
Tt ="M rgan—y (80

To cobtain the second of these equatlons first, introduce
into equation (176) the value of w’ Whl(‘h fo]lows from

equation (175), giving

gt (1 +%)N,';p N —

In equation (181), Ny and N,’ are taken from equation
(173) and, after slight transformations, there is obtained

—<1+X)Q (hTt)GT.Bz -(9;+ ) (152)*

Comparing equations (180) and (182) with the correspond-
ing equations without the effect of transverse shear and nor-
mal stress deformation, it is seen that the effect of transverse
normal stress, which is represented by \, merely somewhat
modifies some of the coefficients of the left sides of the
corresponding system of equations with E,=«. In con-

C*(h+t)

TR asy

trast with this, the effect of finite &.is to introduce a new term
into the left sides of these equations. This new term may
be of appreciable importance, as will be shown.

Having solved equations (180) and (182), M, and 3, are
obtained from equations (179) and (178), respectively; Vo
follows from equation (173) in the form

Ne=a{Q,+ (183)
and w follows from equation (175) in the form
w=(a/CH}(1+)\/3)a Q' +ag+v S p.dz] (184)

The following examples illustrate the use of equations (178)
to (184).
Infinite circular eylindrical shell with periodic load distri-
bution.—In specialization of equations (169) to (171), set
| g=q,sin pz

Pr=DPz COS p

§=8, sln uzx
(185)

=My COS pl
B.‘::ﬁ-zp Ccos pZx (186)

=N’0;; Si]l nx

w=1w, sin ur U=1, COS pi

Q=@ cos pz N, =Nz sin gz Np

} (187)
M,=M,, sin pz

M=y, sin pz

By introducing equations (185) to (187) into equations
(180) and (182), two simultaneous equations are obtained
for the amplitudes ., and B, as follows: .

(]-T)\)D* #sls
Tia— ¥ Pt Ca= m"‘"‘l-{-x—» toE,
A 2tE,
r [(1"[' ) F- 1 2(}1.—"66!] sz- Cr* (:”'q:x T ”sz/a)

(188)

To simplify the further discussion, by setting in equation
(188) My,=8,=pz,=0, there. is obtained for_8,,.and Q..

_ 14— rq,‘
Ba=rnD* i & _
(189)
=4
Q=" K

The quantity K is given by

" (A 2 % 14+ 7\—1& 47 -1

where use has been made of the relation p==/l. In equation
(190) the term N/3 will usually be of little importance. The
other two variable terms represent the effect of transverse
shear deformation and of shell curvature, respectively.
When the radius ¢ is so large that I4/(A-+£)%a?<.1, theshell
behaves under the action of the given load essentially as a
plate strip. The effect of transverse shear is important as
soon as the term (2/—r’)(P/az)[t/(h—l—t)](E’,/G'c) is not small
compared with 1.
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Before evaluating a numerical example the following fur-
ther formulas which are readily obtained from equations
(179), (183), and (184) are listed:

M,,,=E—.; K

Ny=ag,(1 —K) (191)

w=gH ()]

Equations (191) show that in this problem not only is the
deflection increased because of the effect of transverse shear,
and with that the hoop stress resultant Ny, but now also an
effect is found on the bénding-moment distribution M;,, in
the opposite sense. The effect of transverse shear is to reduce
the magnitude of the bending moments in the shell. This
result is in contrast with what was found for the examples

which were worked out in the sections on plate analysis and

circular ring analysis and is therefore of particular sig-
nificance.

Equation (191) for w, may be compared with the corre-
sponding expression for a simply supported plate strip of
width [, with sinusoidal load. The result for this case must
follow from equation (191) in the limit — « and agree with
equation (96), which was previously obtained. To compare
the last of equations (191) with equation (96), the last of
equations (191) is written in the form

BB s,
. = . =t

0T
(1+n1)D*

(192)

Equation (192) reduces to the equivalent of equation (96)
finita—ew.

From a comparison of equations "(192) and (96), it is
further concluded that the correction due to transverse shear
is greatest in this case when = =, so that, in this case, the
curvature of the shall tends to reduce the additional shear
deformation, below the value obtained for the simply sup-
ported plate strip.

For a first numerical example, take A=1 inch, {=0.05
inch, =10 inches, =20 inches, E,/G.=200, E,/E,=100,
»=1/3, and x—; 1—(%%O—Qéloo 0.025.
equation (190) becomes

B 2 400X0.05 4(1—0.09) 160,000 *
K—|:1+°'°°8+? 100><1.05><100+ 2 100X L1

=(1+40.008-}-3.86-+-54.5)"1=

0.01685
while without transverse shear and normal stress deformation

(K)o, ~B,~0=(1+54.5)"'=0.0180

The factor K of

The correction in this case amounts to about 6 percent.

For a second numerical example, change the above
moduli ratios to E;/@,=2000, E,/E;=1000. This gives

K=(1-+0.084-38.6-154.5)=0.0106

instead of K=0.01685. The correction in this case amounts
0.0180—0.0106
0.0108 X100=70 percent.
found where omission of the effect of transverse shear defor-
mation would give results which could not be used. How-
ever, it is noted that the effect of transverse normal stress
deformation is quite small and may here safely be neglected.
If the foregoing values of K are introduced into equations
(191), it is seen that the percentage corrections apply to the
bending-moment value directly but that for hoop tension
and radial deflection the corrections are very small indeed.
In fact, in order that there be appreciable corrections due
to transverse shear on hoop tension and radial deflection, it
is necessary that the half wave length of the sinusoidal load
¢ be so small that K is at least of magnitude 0.25 or more.
A case of approximately this kind is obtained if the half
wave length [ is changed from 20 to 10 inches and the moduli
ratios are again taken as E;/E,=100, E;/C,=200. Then,

K=(1+0.008+0.965+3.41)"

Thus sgain a case is

=(.1865
whereas _
Bz, 6, o =(1+3.41)"1=0.227

The percentage change of K and therewith of A, is slightly
more than 19. The percentage change of Ny and w is about
4.5.

The foregoing numerical examples show that the effect
of transverse shear may be significant in cylindrical sand-
wich-shell analysis and that moreover its magnitude will
not in general be predictable by the analysis of an equivalent
flat-plate or straight-beam problem.

For the infinite circular cylindrical shell with load g=
gucos px the essential results are given by equations (190)
and (191). These results may be extended directly to the
loading condition

g=21n COS iinT
} (193)

pn=nfl

By superposition, from equation (191) the following formulas
are obfained:

- M=33qu/un) K €08 fing

=aZQn(1'—' n) COS a8 (194)
w= (012/0*)Z§1n[1 —(1 +7\/3)Kn] COS un
The values of X, are obtained from the formula
2 % E; 4(14+>x—») it :I -t .
K= Vgt maros oot (ames ] 09
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Having the solution for the infinite shell with periodic lIoad
distribution, it will be only necessary to add to this the gen-
eral solution of the differential equations without external
load terms, in order to obtain the complete solution for any
edge condition of the axisymmetrically stressed circular
cylindrical shell of finite length. This additional solution
will now be obtained.

Finite circular cylindrical shell acted upon by edge mo-
ments and forces.—To solve equations (180) and (182)
with right-hand sides equal to zero, equation (182) is differ-
entiated twice and 8,/ is substituted from equation (180}.
This gives

a A ‘T_...—]'_ re 1+7\
F<1 +§) Q' (h+1G, Q= +(1 i R)D* Qz
or
Q" —2m2Q." +4m*Q,=0 (196)
where
LY B i PR U N R R
™ e \/ TESVE =) G:a\/ TGy & 107
_m__4/0*/4 1+a—»? 1 o =7
TV ED TENAFME) JGrga ¥ APV
(197b)

The auxiliary equation corresponding fo equation (196) is

rt—2mlr2t-4mst=0 (1984a)
or
r’=m?+ ymt—4im,t (198b)

The solution of equation (196) occurs in two different forms,
depending on whether #? of equation (198b) is real or not.
According to equations (197) and (198b), r? is complex as
long as

ml*<4mf

or
1 tE, :l <AL= (1992)
& a6l SE e N3

To clarify this condition, neglect A (which is of very little
importance here) and equation (199a) then becomes

E_r 2a
€<—t_ (199b)

When equation (199) holds, a quantity & may be defined by

L—\: me+i/aml—m?* (200)

and the four roots of the characteristic equation are &, k, —F,
and —Z%, where a bar indicates the taking of conjugates. The
solution of equation (196) may be written

Q.= Cie %+ Cie =4 Cye=+ Coe™

$5G646—h1——33

(201)

Where equation (199) does not hold, which is the case for
very small values of G./E, only, all four roots of equation
(198a) are real and of the form

k1=‘\/m12+ -\/ml‘*-—e‘emf

ky=—Fk
: ' (202)

2

]L'3= -mf— r"-m;*—-4m2'
¥

and the solution of equation (196) ean be taken in the form

Q.= A"+ Aje T4 Age A+ A7 (203)

Before applying either solution to a specific problem, there
are noted the following relations which follow from equation
(200):

FE=|kf=2m?
(204)

-
E+E=+2{mZ+om?

Semi-infinite shell acted upon by edge bending moment
and shear force.—The following boundary conditions hold:

: _a+»D*,
Qz(o) = Qo

while for = « these same quantities vanish. (For the same
problem without the effect of transverse shear and normal
stress, see reference 9.)

Of particular interest in this solution are the values of
deflection «(0) and change of slope 8.(0) at the section where
the loads M, and @), are applied.*

Taking first the case /&< 2aft for which equation (201)
applies, it is seen that the conditions at infinity require that

Co=C>=0 (206)

S0 _tﬁat—

Q=Cie™=+Cre™™ (207)

The values of B8, may be obtained by integration from
equation (180) in the form

(1+x2)D*

0
el _h'["

(208)

where two constants of integration have been discarded to
satisfy again the conditions at infinity.
With equations (207) and (208) there is obtained from the
boundary conditions (equations (205)) that
01‘|‘ ZZ:QG }

(Cyk)+ (Cfle)=—1,

+ Without transverse shear and normal stress deformation these relations are

- fl —2 4a2D‘
2« (0} o= ¢ [ (1 aho* C‘ ]
s=c0)=‘_/% a I:Q«m1 /‘%%E'—' Mo]

in agreement with equations (236) of reference 9, where the homogeneous shell is consideted_

(209)
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This determines €, and C, in the form

0, kQuHEM,
k—k
_ (210)
0.k Q M,
E—k

Equation (210) is introduced into equation (208) and there
is obtained as the first of two “inﬂuence coefficient’” formulas

(1+ND*

TFA—7 @11)

SN .0 == @t +B |
The second of these formulas follows from equations (184),
(207), and (210) in the form

c* w(0)
183 a2

[t @G| @12

Equations (211) and (212) may be written in more explicit
form, using equations (204) and (197). The results are

a AENBDA+FA=AT,
~JC*D* 1+ [Q°+

s T :I |
\/\/ D <1+x)(1+x/3)+(h+t)<1+>\/3)M° (213)

ﬁz(o) ==

an
___a A+N38)(A+A—3)
"O=— 5 e
a? -7\ ' 40* 1+ n—»? - CYa?q,
&=(1 +_§) \/\/ 2D TFNATNE T Gt Tas @
(214)

Neglecting the generally small effect of finite &, in equa-
tions (213) and (214), that is, putting A=0 in these equa-
tmns there may be written mstea.d

0=~ iy E«M]

-\/O*D* 21— G
(215)*
_ a+/1—7? a? £ 14(1—AC* . tla
(0) -\/O*D* MO O'* alD* vl 2m Gr QO
(216)*

Equations (215) and (216) contain the noteworthy fact
that the correction factors for the effect of transverse shear
are independent of the ratio #/A of facedayer thickness to
core thickness. The complete formulas of course must and
do contain the influence of the core thickness %.

It is further noted that, while equations (211) to (216)
have been derived for the case that m,*<4m.*, for which the
complex solution holds, they are also valid, as is readily
shown, when 4mg!=m.*.

Comparing equations (213) and (214), and (215) and (216)
with the equations listed in footnote 4 it is seen that: (1)
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The effect of transverse shear modifies the deflection due to
¢, and the rotation due to Afy; but not the other two cocfli-
cients, (2) the effect of transverse normal stress enters all
four coefficients but only in & minor way, and (3) the reci-
procity relation that the deflection due to Af, is thesame as
the rotation due to @, is carried over from the theory with-
out the extra effects.

For a numerical example the following date are chosen:
t=0.1 inch, A=1 inch, a,—10 inches, E,/E,=100, E,/G.=200,

y=1/3. This makes A=5 1%0—1 100=0.055, and, from
equation (197),

0.1X200

T0Isx L1 0426

™=7%

4 1—0.09
100X1.21X1.018

M= 0.204

Then, according to equation (204),

|k[2=0.173  k+k=+/2+/0.182+0.173=0.84

while without transverse shear deformation (m;=:0) the
value of k+£=0.59. According to equations (211) and
(212), the effect of transverse shear in this case is to in-
crease the rotation due to the edge moment in the ratio
0.84/0.59=1.42, an effect of 42 percent. The same increase
is found for the deflection due to the edge shear force. Ro-
tation. due to the shear force and deflection due to the
moments are practically unchanged. Likewise, the effect
of transverse normal stress in this case is of negligible
importance.

As a further numerical example there is chosen £=0.05
inch, A=1 inch, e=20 inches, E,/E,=1000, E/G.=2000.

This makes )\—1 % 1000=0.065, and, from equa-
tion (197),

m \/ 0.05
1720V 1.022X1.05

oL \4/1—0.09
T L.05%X20 V 1.022

From equation (204) then
k+E=+/2 +/0.234+0.095=0.82

while without transverse shear deformation (m,=0) tho
value of k+£=0.44. Thus the effect in this case is to in-
crease-edge rotation due to edge moment and edge deflee-
tion due to edge shear force in the ratio 0.82/0.44=1.87, an
effect of 87 percent.

Infinite circular cylindrical shell acted upon by trensverse
line load.—Calculation is restricted to the delermination of
deflection and bending moment at the section =0 where the
line load of intensity 26, is assumed to act. The result of
the foregoing paragraph may be used as follows. Consider
the infinite shell eut in two parts at the section =0 and
assume. o bending moment A4 of such magnitude thet the
slope B.(0) is zero. According to equation (211), this gives

2000=0.483

0.218

|k|2=0.095
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M= Qo___ @ @17 Equations (217} and (218) become, with equations (204) and
k& VemiEt4ms? {197),
and therewith 0
" Tz . M= < (219)
C*w(@) _ (R+EP—[k? Qo= 2m242m,’ Q0 (218) \/9 / o* 12— C*la? 1
T ke 2 emitdmg O N AN 3 T GIDG 113
LN e CF_1+r—» | CYa* 1
w(0)=_(1+3) @ D A B £ TR (220)

14+A—3?

C*[a? 1

EDF TN T3 T GrdG 1103

To give these formulas a somewhat less unwieldy appear-
ance, the effect of finite &, that is, A=0, may again be neg-
lIscted, as is permissible in most cases; and there may be
written

(t1a — Qo
My=230 L (221)*
231 —
231 u2)1/1+ 1 tE
\ 2\'1—1’2(5 [
1 tE
— ) =
‘w(O):_-\'l—T : as -\.[1—-720, Gc _Q_D (222)*
1 B+ Da /1+ 1 tEE
‘)_\/1__,,2(1 G,

Some numerical examples are as follows.

Taking t=0.1 inch, a=10 inches, E,/&, =200, and »=1/3,
transverse shear deformation reduces A, to 1/+/2.05 times
the value which holds when @.= =« ; that is, there is about 2
30-percent reduction in Af,. At the same time the deflection
under the line load is 3.05//2.05=2.14 times what it is when
G,= = ; that is, there is an increase of about 115 percent in
w(0).

Taking ¢t=0.05 inch, a=20 inches, and E//G,=200, M, is
decreased by a factor 4'4/5=0.89, while w(0) is increased by
a factor 1.5/1.25=1.34.

Taking t=0.05 inch, e=20 inches, and E,/G.=2000, 31,
is decreased by a factor 1/+/3.62=0.526, while w (0) is
increased by a factor 6.25/+/3.62=3.29.

Equation (220) for w(0) may be compared with equation
(116) for the circular plate of radius ¢. This comparison
shows that, while for the plate both the ratios ffa and (h-?)/a
enter into the correction factor, the correction factor for the
cylindrical shell contains the ratio ¢/fa only; that is, the
corrections (but not the results) are independent of the ratio
of face-layer thickness to core thickness in this case of a
cylindrical shell.

SPHERICAL SHELLS

In conformity with customary usage, the following nota-
tion is introduced:

E=a¢ s=ab a=1 )

a;=sin ¢ Bi=R,=a Nu=N,

Ny=Ns Nig=Nn=Ngs =0

Q=0Qs M,=2M,; Myp=DM, - (223)
M, =My =D Pr=Ds

m=mg Ma= My U=

Us=V B1=8Bs B:=Bs

Attention is here restricted fo problems with rotational
symmetry and the following relations are used:

o )/o8=0 -
} (224)
N¢3= Q6=-']’-‘[¢9=Pﬂ= Me=— U=Ba=0

The differential equations of equilibrium. (25) to (28}, (31),
and (34) become, setting

o( og=d( )lde=( Y
(sin ¢ N, —cos ¢ Ne+sin¢ @s+asin ¢ p,=0 (225)
(in ¢ Qo) —sin ¢ (Ny+Np)+tasin ¢ ¢g=0 (226)
(sin ¢ ALY —cos ¢ El:&;—a.sin ¢ Qstasin ¢ meg=0
(227)

orm+ @+ (R +Ha—s=0 (228)

The stress-strain relations (56), (59) to (61), and (64} to
(67) become, if there is set in accordance with equation: (63)

1 (h+0t E,
7\1=7\2=)\12=§( i;t) 'Er:= (229)
LA A '+w , b4t
(4g) N (r-3) M= (041 £;) @30
<1+%)Na—(v—% N¢=0*<“ ot o .L}{;;t% (231)
Q=+06.(8,+2Y) (232)
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A+ —6-NM=2"(8/+5)  (239)

%
A+NMi—G—NMo= (B, cob o+57) (234

There is first given a simple special solution of this system
of equations and then a generalization is obtained of the two
simultaneous equations for @, and 8, which are fundamental
in the theory of homogeneous 1sotroplc shells.

Uniform stress distribution in a spherical shell—Set in

equations (225) to (234} ps=m4,=0 and assume that Ny, Ny,

@4, M,, and M, are independent of ¢. From equation (225)
it follows that:

N¢=N0=No Q¢=0 (23 5)
From equation (226) it follows then that
No=% aq (236)
and from equation (227) it follows that
M,=My=M, (237)
Equation (228) gives
' otm=8—2M,/(h+D)a (238)

In equations (230) and (231) set =0 for reasons of sym-
metry and obtain

c*  Hh+i) E,

(1-|— A—y JNg=—wt+——7> 5 E

or, with NV, from equation (236) and A from equation (229),
(C*ayw=(1/2)(1 —r)ag (240)

Equation (232) is identically satisfied when B,=0. KEqua-
tions (233) and (234) , in conjunction with equation (237),
give

D* & 1t#h+9)® E,
(1+27\—V)Mo—7 E_§ P E—c-s
or
— (httar
Mo_l+27\——u & (24:1)
Then, from equation (238),
(L—v)s (242)

e

Equation (242) may be compared with equatlon (136) for
the circular ring.

According to equation (46), there are obtained from equa-
tions (236) and (241) the following expressions for the stress
resultants in the outer (‘‘upper’) and inner (‘lower’) face

layers:
<1+h+t)N_ (4 1+2>\—y>

(1-55) M= ({~rm=)

(243)

(239)

Comparison of these results with the corresponding result®
for the circular ring (equations (135)) shows that for given
values of ¢ and s there is a greater difference between N, and
N, in the spherical shell than there is in the circular ring,
the reason being the relatively larger influence of the s-term
in equation (243).

For a specific example, it is again assumed that the radial

- Joad is applied entirely to the inner face so that g,=0 snd,

according to equations (20) and (22),

<1_h—l—t
(244)
1 4\
s———§<1 2a
Substitution of equation (244) in equation (243) gives
b+t ]b-f-t ag,  l—v
(H' N (1 s Tron—»
(245)
N_<1_h+t ag; 14+4x—v
- 2¢ /) 4 1+2x—»

As a numerical example, taking A=0.0595, as in ihe ex-
ample given in the section entitled ‘“Closed circular ring
acted upon by uniform radial load,” and »=1/3, it is found
that the factor in N; which contains the effect of the core
flexibility is (1+0.36)/(1+0.18)=1.15. Thus, where for the
circular ring there was a 6-percent stress increase, there now
is a 15-percent stress increase for the spherical shell.

Reduction of axisymmetrical problem to two simultaneous
equations for @, and gs.—The fundamental results of refer-
ence 10 for homogeneous shells may be readily extended to
sandwich shells, as follows:

Equations (225) and (226) are used to express N, and N,
in terms of Q.

Ny=cot ¢ @4+ Fi(9)
=Q¢’+Fz<¢)

In equations (246) and (247) the functions F; and F, are
given by

(246)
(247)

F=

S (g cos ¢—py sin ¢) sin ¢ dp  (248)

sm’

Fo= [sin ¢ F)'+ap, sin ¢] (249)

cos qS

Next the displacement components « and w are expressed
in terms of @4, by means of equations (230), (231), (246),
and (247).

Subtraction of equation (231) from equation (230) gives

T w—cot ¢ W=(1+)(Ne—Ny)

=149 [—(Qs'—cot ¢ @)+ I—Fy
' (250)
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Equation (112) is integrated to

(C*layu=—1+9)(Qs+F3) (251)
where Fj; is given by

S].nqS

Equations (251) and (252) are introduced into equation
(231) and the following expression is obtained for 4o:

(C*layw=(1+1[3)(cot ¢ Qs+ Qs+ F: (253)

where F, is given by
F=—8E0 Lty et o At(14]) B—(-})
(254)

Equations (251) and (253) are introduced into equation
(232) for @, and the first of the two simultaneous equations
for @; and B, is obtained in the form

(h-{%;)G ﬁf’“’c* [(1 T 3)(Cot ¢ QotQ Y +F/+

A+ (Q+F) |
which may be rearranged to read
e [ agt2ze_2—M3, C* ]
Q" oot 6 Q| ottt st | Ot
c* , =
1033 Bo=Fy(¢) (255)

When A=0 and G.=« and when no external loads are
present, this equation checks with the first of equations (g)
on page 469 of reference 9.

The function Fj is given by

_(d+nF+F, x
F="—Tn (256)
Introducing the operator
L=( )+cot ¢( ) —cot® ¢( )
equation (255) may finally also be written
(L— ) Qo rcarz Bs=Fi#) @57
Fi1/Y¥e 1+k[3 e— L5 ¢
where
(2 E N1 -
“‘_(‘h——i—t 6. ’T3)1T3 (258)

The second of the two simultaneous equations is obtained
somewhat more directly as follows: Write equations (233)
and (234) in the form

D*la
1—r+ 20147

M, (1+MBs"+(—N) cot ¢ Bst

W+ 5 (259)

807

AL D* @ _ ’
MmN ot 6 Bot-—NBs +
(149 5| (260)

Introduce equations (259) and (260} into the moment equili-
brium equation (227) and obtain

D*fa ”

(261)

4
(1+5) g {—eQotame=0
Again, using the operator L, this may be written in the form

(Z-22) 80— Frli— P20+ Q=Fi9) @69*
The function Fy is given by

Fe=—(1+ +221+)ms  (263)

r 2
N g—pEll—
Equation (262) may be compared with the second of
equations (g) on page 469 of reference 9.
Analysis of edge effect for spherical shell—The special
case of no distributed surface load and no concentrated load
at the apex of the shell is obtained by setting

F5=F5=0

Following again a known procedure from the theory with-
out transverse stress deformation, there may be set

Q= p=—t (264)

48ln ¢ \sing

’ Ql 1 Q
QQ 1-"sin @ 2 coté =g 4 Sl.D. 1)
(265)
rn
Q‘ —cot ¢—= & +< cot? ¢+
1smqo vsin ¢ 4 xsmqs

with corresponding formulas for 8¢” and g¢’’. Introduction
of equation (264) into equations (257) and (262) gives

QI"+<#1+———cot" )Ql+1+>\/3 Ai=0 (266)

,,_<
1+x

S eot? )81 B LA A1+ Q=0
(267)

Assuming that cot ¢, is not large compared with unity ®
and that the effeet of the edge loads is restricted to a narrow
edge zone so that | @] <|'’}, |B:| <|B:’’[, equations (266)
and (267) may be simplified to

-
o~ S j— ; %
Ql ,lLLQL T 1+A/3 8:=0 (268)

2

7% 1=+ 201+ =0 (269)*

e

& When cot 63> 1 the shell is termed a ““shallow'” shell which Is not considered in what
follows.
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Equations (268) and (269) show that the influence of finite
E,(\s20) in the edge-effect problem consists, except in ex-
treme circumstances, in minor modifications of the results
for E,= «. The quantity g, which represents the influence
of finite &, and which is approximately

MTEI G 17N 3

- (270)

may, however, in practical cases be large compared with
unity and not of negligible influence on the results.

Equations (268) and (269) may be compared with equa-
tions (180) and (182) for the cylindrical shell. This com-
parison shows that the influence of finite @. in the edge-effect
problem is of the same nature for the spherical and cylindri-
cal shells. Thus, results of the same quantitative nature
will be obtainable as in the section on cylindrical shells under
the headings entitled “Finite circular cylindrical shell acted
upon by edge moments and forces” and ‘‘Semi-infinite shell
acted upon by edge bending moment and shear force.”

This work is not herein carried further to specific applica-
tions. It is apparent that such applications may be worked
out with hardly any more difficulty than when the effect of
the core deformability is not taken into account.

CONCLUDING REMARKS

A system of basic equations has been derived for the analy-
sis of small-deflection problems of sandwich-type thin shells.
This system of equations réduces to Love’s theory of thin
shells when the transverse shear and normal stress deforma-
bility of the core of the sandwich is of negligible importance.
The system of basic equations has been applied to & number
of specific problems from the theory of plates, circular rings,
circular cylindrical shells, and spherical shells, and it has

been found that the effects of both transverse shear and trans- -

verse normal stress deformation may be of such magnitude
that an analysis which disregards them gives values for deflec-
tions and stresses which are appreciably in error.

Numerical calculations have been in the nature of sample
calculations, illustrating both the use of the equations and
the possible effects of using them. Examples have been
chosen from the point of view of relative simplicity as well
as with the thought to illustrate most clearly the conse-
quences of the extra deformations which have been taken
into account. It is unavoidable that, in so doing, some of

the examples may be of little interest for aircraft structural
analysis and that some problems may not have been analyzed
which would have well fitted within the contents of this
report and which at the same time would have been of con-
siderable practical importance.

The general analysis has been restricted by the following two
order-of-magnitude relations: (1){/A<1 and (2) tE/AE>1,
where £ is the face-layer thickness, & is the core-layer thick-
ness, K, is the elastic modulus of the isotropic face-laycr
material, and £, is the elastic modulus in the transverse
direction of the core-layer material. Therewith it is felt
that very likely nearly all situations have been covered in
which the effect of transverse core flexibility is of signifi-
cant practical importance. It is evident, however, that if
desired the theory could be extended so as to include cases
where one or both of these two order-of-magnitude relations
are not satisfied. The main limitation of the present analy-
sis is~the omission of all finite-deflection and instability
effects.

MassacauserTs InsTITUTE OF TECENOLOGY,
Cambridge, Mass., May 26, 1947.
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